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INTRODUCTION

In convex function theory it has long been recognized as useful to identify
a convex function with its epigraph, the convex set of points on or above its
graph. Similarly, a concave function is identified with its hypograph, the
convex set of points on or below its graph. Analysis is then performed in the
product space. We present two standard examples. First, the interior of the
epigraph of a convex function I consists of those points (x, a) for which x
lies in the interior of the domain of I and a> I(x). As a result I is upper
semicontinuous on the interior of its domain. Second, a closed convex set is
the intersection of the closed half spaces that contain it. As a result, a lower
semicontinuous convex function is the pointwise supremum of the affine
functions that it majorizes.

Such techniques have enjoyed only limited popularity in other branches of
real analysis; that is, the topology and/or linear structure of the graph,
epigraph, or hypograph of a real valued function are rarely used to define the
fundamental concepts of analysis or to prove theorems. Their role has been
essentially descriptive. It is the purpose of this paper to "perform analysis in
the product" to gain a new understanding of the notion of uniform approx­
imation. Our basic tool will be the Hausdorff metric on closed subsets of the
product. Using this metric we present a generalization of the Stone Approx­
imation Theorem to the space of upper semicontinuous functions defined on
a compact metric space. In the process we extend Dini's theorem, charac­
terizing those sequences of upper semicontinuous functions convergent
pointwise from above to a continuous function that converge uniformly.
Finally, since the topology on the continuous functions on a compact metric
space induced by the Chebyshev norm coincides with the one induced by the
Hausdorff metric when restricted to their graphs, we obtain a different view
of equicontinuity and its place in the Arzela-Ascoli theorem.
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1. ON THE STONE ApPROXIMAnON THEOREM

Let C(X) be the vector space of real valued continuous functions on a
compact Hausdorff space X equipped with the Chebyshev norm: 11I1I =
SUPXEX I/(x)l· It is well known [91 that a sublattice n of C(X) is dense if for
each e > 0, for each (Xl' x 2 ) in X X X, and for each I in C(X) there exists h
in n such that Ih(x,) - l(xl)1 < e and Ih(x 2) - l(x2 )1 < e. Following [5[ we
shall call this result the Stone Approximation Theorem. Often the hypotheses
of the theorem are strengthened as follows: n is a lattice and for each two
points in X X R with different first coordinates there exists a member of n
whose graph contains them both. This condition is in turn satisfied if (I) for
each I in n and each scalar a, both al and a + I are in n, and (2) n
separates points.

It is one purpose of this article to give a variant of the Stone Approx­
imation Theorem for the space of upper semicontinuous functions on a
compact metric space X. It will become clear that the condition on the
graphs of members of n in the statement of the theorem might not be the
essential one; instead what seems crucial is that points in X X R can be
isolated from one another in the following sense.

DEFINITION. Let X be a topological space and let n be a class of real
valued functions on X. n is said to isolate points in X X R if. whenever
(XI' a l ) and (x2 , a2) are points in X X R such that either x I *' x 2 or x, = x 2

and a I < a 2' there exists I in n such that

(X., a l) E int{(x, a): a ~/(x)f,

(x2 ,a 2)rl j(x,a): a~/(x)}.

This property is easy to visualize when n is a class of continuous
functions: given a pair of distinct points (xI,a,) and (x 2 ,a 2 ) in XXR,

where (x" at) does not lie directly above (x 2 , a 2 ), there exists a function in
n such that (x,. a l ) lies below its graph and (x2 , a 2) lies above. We next
show that the condition on the graphs of the members of n in the Stone
theorem implies that n isolates points.

LEMMA 1.1. Let X be a compact Hausdorff space and n a subset 01
C(x) such that lor each e >O,/or each (X., x 2) in X X X, and lor each I in
C(x) there exists h in n such that Ih(x,) - l(xl)1 < e and Ih(x 2 ) - l(x2 )1 <e.
Then n isolates points in X X R.

Proof. Since each member of n is continuous, a member of n will
isolate (X., a l) from (x2, a2) if and only if (x!, at) lies below its graph and
(x 2 , a2 ) lies above. Now compact Hausdorff spaces are normal; so. by
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Urysohn's lemma, for each pair of points in X X R with different first coor­
dinates there is a continuous function whose graph passes through them
both. If XI = x 2 and a l <az there is a continuous j whose graph contains
(XI' Hal + az». We can find h in Q such that Ih(x l ) - j(x l )! < Haz - a l ),
and this function isolates (xl'a l ) from (xz,a z)' If XI ,eX2 , choose a
continuousjwhose graph passes through (XI' a l +6) and (xz, a2 - e). There
exists h in Q that satisfies [h(xl)-j(X I )[ <e and Ih(xz)-j(xz)1 <e.
Clearly, this h is the desired isolating function.

Using the Chebyshev norm it is impossible to approximate an arbitrary
u.s.c. function by simple ones, e.g., continuous functions or u.s.c. step
functions (when the domain is a rectangular parallelepiped). Instead, our
approximation theorem in this context will be stated in terms of a different
metric. Before describing this metric we recall the notion of Hausdorff
distance between closed sets in a metric space.

Let Y be a metric space with metric d and for each y in Y let B A [ y]
denote the closed A.-ball about y. If K is a closed subset of Y, then the A.­
parallel body of K, B.dK], is the set UYEK B.d y]. Parallel bodies need not be
closed. For example, consider [0, I) as a subset of [0, I) U [2,51 with the
topology inherited as a subspace of the line. Clearly, [0, 1) is relatively
closed, yet its parallel body of radius two [0, 1) U [2,3) is not. If C and K
are closed sets and there exists A. > 0 such that B A [CJ ~ K and B.dK] ~ C,
then the Hausdorff distance of C from K is given by

D(C, K) = inf{A.: B.dCJ ~ K and BA[K] ~ q.

If no such A exists, then we let D(C, K) be infinity.
Now let X be a compact metric space with metric d. One of a number of

ways to metrize X X R in a manner compatible with the product uniformity
is to define the distance between (Xl' a l ) and (xz, az) to be max{d(xl' Xz),
[a z - all}. To avoid excessive notation we will symbolize this distance in
X X R by d, too. Let U(X) denote the bounded u.s.c. functions on X. If j and
g are in U(X) the Chebyshev distance between them, SUPXEX [j(x) - g(x)l,
will be represented by d l (f, g). Denote the closure of the graphs of j and g
by J and g. These are, or course, compact sets in X X R, whence
D(j, g) < ro. We write dz(f, g) = A if D(j, g) = A, and the upper semicon­
tinuity of the functions implies that dz is a metric, not just a pseudometric.
The metric of special interest for this section requires one further definition.

DEFINITION. Let j be a real valued function on X. The hypograph of f,
denoted by hypof, is {(x,a): xEXand a::::;;j(x)f.

We finally let d 3(f, g) = D(hypo f, hypo g), a notion of distance
analogous to that used by Mosco [3], Robert [6], and Salinetti and Wets [8]
in their study of convex functions. Although both d z and d 3 are metrics on
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U(X), since upper semicontinuous functions are characterized by having
closed hypographs, the metric d3 seems more appropriate in this general
context. On the other hand, since the continuous functions are precisely
those members of U(X) whose graphs are closed sets, the metric d2 is a
natural one for C(X). Before stating our approximation theorem we need
some basic facts about d3 and its relationship to the other two metrics.

DEFINITION. Let X be a compact metric space and let f be U.S.c. For
each positive A the upper A-parallel function off is defined as follows:

f1(x) = sup{a: (x, a) E B,dll f.

LEMMA 1.2. For each u.s.c. f and each positive A, B.dhypo f] =
hypo f1.

Proof Let (x, a) be in B.dhypof]. Then there exists (y,fJ) In hypof
such that d[ (x, a), (y, fJ) I~ A. Since

d[ (y, f(y)), (x, a + f(y) - fJ) j = d[ (y, fJ), (x, a)],

we have a+f(y)-fJ~Ft(x). Since a~a+f(y)-fJ, we conclude that
(x, a) is in hypofr Conversely, suppose that (x, a) is in hypof1. Now
there is a sequence {Yn} in X such that for each n, d[(x,f.t(x)),
(}'n,f(Yn))] ~A + lin. Since X is compact and {f(Yn)f is bounded we can
assume by passing to a subsequence that {( yn' f(yn))} converges to a point
(y, fJ), and since hypo f is closed, (y, fJ) will be in hypo f Clearly,
d[ (x, f1(x)), (y, fJ) I ~ A; so, (x, f.t (x)) is in B.dhypo fl. Since a ~Ft (x), it
is clear that (x, a) is in B~ [hypo f j, too.

LEMMA 1.3. Let X be a compact metric space and letfbe u.s.c. Thenfor
each A > 0, the function f.t is in U(X).

Proof It suffices to show thatf1 is bounded below and is U.S.c. Suppose
f1 were not bounded below. Then there exists a sequence {(zn,Pn)f in the
complement of hypo Ft such that Pn < -n for each n. By Lemma 1.2,
(zn'Pn) has distance at least A from each point of hypof By passing to a
subsequence we can assume that {zn} converges to some point z. Evidently,
(zn'Pn) can be made arbitrarily close to the half line {(z, a): a ~f(z)f for all
n sufficiently large. Since {(z, a): a ~ f(z)} c hypo f, a contradiction ensu~s.

The upper semicontinuity off1 follows from Lemma 1.2 and the fact that
in a space where closed and bounded sets are compact, parallel bodies of
closed sets are closed. Clearly, X X R is such a space.

As a result of Lemma 1.3, d 3 is a metric on the space of all u.s.c.
functions and not just on U(X). To see this we need only verify that the
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distance d3 between two arbitrary u.s.c. functions is finite. To this end let f
and g be u.s.c. By Lemma 1.3 there will exist a> -00 such that infUt(x):
x E X} > a. Let fJ = max{g(x): x E X}. We obtain the following inclusion:

BI+IIl_a,[hypof]::::> hypo g.

We have shown that hypo g is contained in some parallel body of hypo f
Similarly, hypo f is contained in some parallel body of hypo g, and as a
result d 3(f, g) < 00.

When f is continuous the function f.r need not be continuous. To see this
let X = [0, I] U {2} and define f: X -+ R to be 2X121' Then

fi(x) = I if O~x<1

=3 if x=1

=3 if x=2.

The problem here seems to be that X is not connected. Actually, connec­
tedness is neither necessary nor sufficient for the continuity of the upper
parallel function. It can be shown, however, that if X is a compact convex
subset of a normed linear space, then the upper parallel functions for each
member of C(X) are continuous.

LEMMA 1.4. Let X be a compact metric space. Iff and g are in U(X),
then dl(f, g) ~ dif, g) ~ dif, g).

Proof Suppose dl(f, g) =.t For each x in X we have d[(x,f(x)),
(x, g(x))] ~A. so that the graph of f (resp. g) is a subset of BA[g! (resp.
B.dl]). Since g is compact, BA[g] is a closed set; so,] c BA[g]. Similarly,
gcBA[J], and we have shown that d2(f, g) ~ dl(f, g).

To see that d2(f, g) ~ d3(f, g) suppose that BA[l] ::::> g and BA[g!::::> J By
the first inclusion for each x in X, f;' (x) ~ g(x). Thus, by Lemma 1.2,

BA[hYPof! = hypoft::::> hypo g.

Similarly the second inclusion implies that B.dhypo g] :::J hypo f, and it
follows that d2(f, g) ~ d3(f, g).

In U(X) convergence in d2 does not force pointwise convergence, much
less uniform convergence. Let X = [0, II and let f = XIO)' If n is even let
fn = XII/n.OI' and if n is odd let fn = XII/nJ' Observe that d2(fn,f) = lin but
unC0)} does not converge. Convergence in d3 does not force convergence in
d2 even when restricted to C(X). To illustrate this fact for each positive
integer n let fn: [0, 1]-+ R be the function whose graph consists of the line
segment joining (0, -n) to (lin, 0) and the one joining (lIn, 0) to (1,0). Iff
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IS the zero function, then we have, for each n, d3(fn,f) ~ l/n but
d2(fn, f) = n.

The next result presents a local characterization of d3-convergence; it is a
variant of a theorem for co~vex functions due to Mosco [3 J and shows that
d 3-convergence is dual to the infimaI convergence of Wijsman [IOJ for I.s.c.
functions.

LEMMA 1.5. Let X be a compact metric space and let {In} be a sequence
of u.s.c. functions on X. Then {In} converges to f in the metric d3 if and only

if
(1) For each x in X whenever lxn}-+x then lim sUPn~oofn(xn) ~f(x).

(2) For each x in X there exists a sequence {xnf convergent to x for
which lim infn~oo fn(xn) ~ f(x).

Proof Suppose (1) holds. Let e > O. For each x in X there exists
p(x) E (0, e) and an integer Nx such that if d(x, y) <p(x) and n ~ Nx then
fn(Y) < f(x) + 6. Choose {x!,,,,, xd c X for which

k

Xc U {y: d(xi, y) <p(xi)}·
i= 1

Let N = maxjNx" "" Nx ) and let x in X be arbitrary. Choose Xi for which
d(x, Xi) <p(xJ < 6. By the definition of distance in X X R, we have, for each
n, d[(x,fn(x)), (xi,fn(x) - 6)J = 6. Moreover if we choose n ~ N, then since
(xi,fn(x) - 6) E hypo f, the graph of fn is a subset of B.[hypo fJ. It follows
that hypo fn c B.[hypo fJ.

Now suppose (2) holds. Again let 6> 0 be given. For each x choose
p(x) < 6/2 such that if d(y, x) <p(x) then f(y) < f(x) + 6/2. Pick x 1"'" xk
such that

k

Xc U {y: d(y, xJ <p(xi)}·.= 1

By (2) we can choose N so large that for each n ~ N there exists
lxn, ,..., x nk }C X such that for each i = 1,... , k both f(x i) - fn(xni ) < 6/2 and
d(xni , Xi) <p(xi). Let x E X be arbitrary. Choose Xi for which d(x;. x) <
p(xi). It follows that d(x, x ni ) < e and f(x) < fn(x ni) + e. Thus (x, f(x)) is in
B.[hypofnJ for each n~N so that hypofcB.[hypofnJ. We have shown
that (1) and (2) jointly imply that {In} d 3-converges to f

Conversely suppose {In} d3-converges to f and {x n } -+ x. There exists
{(Yn,Pn)} c hypof such that d[(}'n,Pn)' (xn,fn(xn))]-+ O. Since lYnf -+ x
and f is u.s.c. at x,

lim suPfn(xn) = lim sup Pn ~ lim supj"(Yn) ~f(x).
n~oo n-+oo n-+oo
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We have established (1). Similarly there exist {(xn , AnH c hYPofn such that

Since {xn}-H and {An} --+ f(x) and for each n,fn(xn) ;;;:d.n, we obtain (2):

f(x) = lim A.n~ lim inf fn(x n),
n-+oc n-tOC!

Notice that if {fn f d3-converges to f and jxn} --+ x and (2) holds, then
limn~CX)fn(xn)=f(x). In particular if for each n we havefn(x)~f(x), then
limn~CX) fn(x) = f(x). We also remark that the compactness of X not only
guarantees the sufficiency of conditions (1) and (2) but is necessary for their
sufficiency. In other words if X is not compact we can select u.s.c. Un} andf
that satisfy (1) and (2), but Un f fails to d3-converge to f To see this let X be
noncompact. Choose a sequence! J'n} in X with no convergent subsequence.
Let fn : X --+ R be defined by

fn(x) = 1

=0

if x = Yn

otherwise.

Then {fn} satisfies (1) and (2) with respect to the zero function, but Un}
does not d 3-converge to zero.

Our main result, Theorem 1, and the Stone Approximation Theorem
(which in light of Lemma 1.1 is an immediate corollary) are consequences of
the following approximation theorem for compact sets. The superscript .....
used below denotes set complement.

LEMMA 1.6. Let E be a lattice of compact sets in a compact topological
space X. Let C be a compact subset of X. Suppose for each (x, y) in C xC
there exists K(x, y) in E such that x is in int K(x, y) but y is not in K(x, y).
Then if 0 is an open set containing C, there exists K in E such that
Cc intKc O.

Proof Fix y in O. For each x in C choose a set K(x, y) as described
above. By the compactness of C there exists a finite subset of {K(x, y):
x E q whose interiors cover C. Since E is a lattice, the union of this finite
family K y is in E. Repeating this construction for each y in 0 we see that
{Ky : yEO} is an open cover of O. Let {Kyl : i = 1,... , n} be a finite subcover.
Then C c int n;=l K YI cO. Since nK Yi is in E, we are done.

Our main theorem gives sufficient, but not necessary, conditions for a
sublattice n of the u.s.c. functions to be d 3-dense. For example, the sublattice
e of the u.s.c. functions consisting of the functions constant except at finitely
many points does not isolate points but is nevertheless d3-dense. To see this,
note that the bounded u.s.c. functions (by virtue of including upper parallel
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functions) are d)-dense, and using the total boundedness of X we can inscribe
in the hypograph of each member of U(X) the hypograph of a member of e
to any desired degree of d)-accuracy.

However, it is easy to see that the condition "Q isolates points" actually
characterizes sublattices Q of the U.S.c. functions that are upper dense, i.e.,
for which each u.s.c. f is in the closure of j g: g ;;;, f and g EO Q f.

THEOREM 1. Let Q be a lattice of u.s.c. functions on a compact metric
space X that isolates points.

(a) Iff is u.s.c. then there exists a sequence lh n} in Q convergent to f
from above in the metric d3'

(b) If f is continuous and {h nf is d)-convergent to f from above, then
{h nf converges uniformly to f

Proof (a) Since f can be d)-approximated from above by its upper
parallel functions, Lemma 1.3 allows us to assume w.l.o.g. that f is in U(X).
Next choose m and M such that for each x in X we have m < f(x) <M. For
each h in Q let h*: X -+ R be defined by h*(x) = minjh(x), M}. Clearly,
Q * = {h *: h EO Q} is a lattice of u.s.c. functions whence {hypo h*: h EO Q} is
a lattice of closed sets in X X R. Since X X 1m, M] is compact, for each h in
Q, K h = {(x, a): m ~ a ~ h*(x)f is compact. Let C = {(x, a): m ~ a ~f(x)}.

We claim that {Kh : h EO Q} satisfies the hypotheses of Lemma 1.6 relative to
C in the compact space X X [m, M].

To see this let (x I' a I) be in C and let (x 2 ' a 2) be in e. It is not the case
that XI = x 2 and a2 ~ a l • Since Q isolates points there exists h in Q such that
(XI' a l ) EO int(hypo h) and a2 > h(x2 ). Since M;;;' a2 we have h*(x2 ) = h(x 2)

so that (x2 , a2 ) is not in K h' Choose A> 0 and a neighborhood V of x I such
that VX (ai-A, a l +A)chypo h. If a l <M set b=min{M-al,A}.
Clearly, VX (al-o, a l +o)chypo h* so that (xI,a l) is an interior point
of K h relative to X X 1m, M]. If a l = M then h exceeds M throughout V so
that h*(x) = M for each x in this neighborhood. Thus, (x I' a I) EO (V X R) n
(X X 1m, Mj) c K h' Once again, (x I' a I) is in the interior of K h relative to
Xx [m,M].

Continuing, choose N so large that for all x we havef(x) + liN < M. For
each n >N let On be the union in the subspace X X 1m, M] of the open lin
balls whose centers lie in C. By Lemma 1.6 there exists hn in Q such that
C c Kh C On' Now the second coordinate of each point in On is less than
M; so,"h:=hn. Clearly, "n majorizesfso that B,1nlhypohnl::JhYPof
Furthermore, since OncBlln[hypof] and j(x,a): a~m}c(hypof)n

(hypo hn), we have hypo hncBI/nlhypofl. Thus, {h n} converges tofin the
metric d) from above. Notice that as a consequence of Lemma 1.5 the
convergence is automatically pointwise.



UPPER SEMICONTINUOUS FUNCTIONS 9

(b) If dihn,f) < 11k then we have

hypo f c hypo hn c B ,/dhypo fl.

By Lemma 1.2 for each x in X it follows that f(x) ~ hn(x) ~f0k(X). By
Lemma 1.3 and Lemma 1.5 the sequence Ifi/k - If satisfies the hypotheses
of Dini's theorem [7]. Thus d 1(filk,f)---+0 so that d,(hn,f)---+O.

Two remarks are in order. First, it is probably not possible to replace the
condition "n isolates points" by "n separates points" in conjunction with a
nice algebraic condition. Upper semicontinuous functions are not closed
under multiplication by negative scalars, and if n were merely a cone-lattice
of u.s.c. functions that separates points, then n need not be dense. For
example, the cone-lattice generated by the increasing affine functions on
[0, I] separates points but is not dense in UfO, 1] because it consists solely
of increasing functions. Second, the approximations described in the last
theorem are not irrelevant. In particular for each u.s.c. functionfon a closed
interval there exists a decreasing sequence of u.s.c. step functions convergent
to f pointwise [7]. Theorem I gives this result a metric interpretation, for
U.S.c. step functions form a lattice that isolates points. More importantly,
since the continuous functions on a compact metric space form a lattice that
isolates points, they are dense in the u.s.c. functions relative to d J •

We close this section by noting that a lattice of u.s.c. functions that
isolates points need not be dense in U(X) relative to d2 • In fact, C(X) need
not be dense relative to this metric. To see this let X = [0, I] and consider
the u.s.c. function X(OJ' If d2(xIOI' gf ~ j, then the graph of g must lie in both
of two disjoint rectangles, [-j, t] X [j, 1] and [-t.1] X [- t, t]. Clearly,
these rectangles disconnect the graph of g, whence g cannot be continuous.

2. ON THE ASCOLI THEOREM

LEMMA 2.1. Let X be a compact metric space. Let Ifn} be a sequence of
u.s.c. functions and let f be a fixed member of C(X). Then d 1(fn' f) ---+ °if
and only if d2(f. fn) ---+ 0.

Proof Since dl(fn,f)~difn,j), one direction is trivial. Suppose now
that d2(f, fn) ---+ 0. For each positive A we define the lower A.-parallel function
of f as follows: f.i"(x) = inf{a: (x, a) E B.\[]]}. Since f is lower semicon­
tinuous, Lemma 1.3 implies that eachf.i" is l.s.c. By the convergence of (fn f
in d2 for each positive integer k there exists N such that n > N implies that
for all x,fl;k(x)~fn<x)~fi/k(x). Hence, to show that d 1(f,fn)---+0, it
suffices to show that Ifi/k - fl;d converges to zero uniformly. Since the
graph of f is closed and 1= nf=, B 1/ k[]], it is clear that {fi/k - fl;d
converges pointwise to the zero function. Moreover, since for' each k,
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f ilk - f I;k is u.s.c., the sequence satisfies the hypotheses of Dini's theorem.
Thus, the convergence is uniform and the lemma is proved.

Lemma 2.1 implies that d2 and d, are equivalent metrics on C(X), a fact
noted by Naimpally [4]. The compactness of X is indispensable. To see this
consider the spiked function f: [0, (0) -+ R whose graph consists of line
segments connecting the following points in succession:

(0,0), (Lo), (1, 1), (~,O), (LO), (2,1), (1,0), (-¥-,O), (3,1), e! ,0),....

For each positive integer n the upper lin parallel functionfiln is continuous,
and it is evident that d2(filn,f) -+ O. However, the convergence fails to be
uniform because for each n> I we have filn(n - I - lin) ~ I whereas
f(n - 1 - lin) = O.

The equivalence of d, and d2 on C(X) when X is compact brings forth the
geometric substance of the Ascoli theorem: a closed subset of C(X) is
compact in the metric d, if and only if it is equicontinuous and bounded.

Let {fn} be a bounded sequence of functions in C(X). There exists r > 0
such that for each n, the graph In of fn lies in X X [-r, r]. Now the compact
subsets of the compact space X X [-r, r] under the Hausdorff metric form a
compact metric sace [1]; so, we can extract a subsequence {fn) of {fn f
convergent in the Hausdorff metric to a compact subset C of X X [-r, r]. If
we knew that C were the graph of a functionf, then automatically fwould be
continuous because its graph is a compact set, and by Lemma 2. L {fn)
must converge uniformly to f The equicontinuity of link} not only
guarantees that C is a graph of a function; the two notions are equivalent.

THEOREM 2. Let {fn} be a sequence of continuous functions on a
compact metric space X. Suppose there exists a compact subset C of X X R
such that the graphs of the terms of the sequence converge in the Hausdorff
metric to C, i.e., D(ln' C) -+ O. Then C is the graph of a function if and only
if {In} is an equicontinuous sequence.

Proof We recall some terminology. The upper (resp. lower) closed limit
of a sequence of sets in a metric space is the set of points each neighborhood
of which intersects infinitely many (resp. all but finitely many) terms of the
sequence. Since D(Jn' C) -+ 0, the upper and lower closed limits of {fn} both
equal C [1]. In particular, since C equals the upper closed limit of Iln} and
for each x Ifn(x): n = 1,2,... } is a bounded set of numbers, there exists ax
such that (x, ax) is in C.

First, suppose that C is not the graph of a function. By the comment at the
end of the last paragraph, there must exist distinct points (x, a) and (x, fJ)
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both contained in C. Since both points belong to the lower closed limit of
{fnl there exist sequences {(zn, an)} and {(Yn,Pn)} such that

and

and for each n,

For large n the number d(zn' Yn) can be made arbitrarily small whereas
I/n(zn) - In(yn)1 will exceed t Ia - PI. Thus, the sequence of functions is not
equicontinuous.

Conversely, suppose that {In f fails to be equicontinuous. Since each term
of the sequence is uniformly continuous, there exists e >0, a subsequence
Un) of {In I and points {zd and Lvd in X such that for each k

but

Since C is the upper closed limit of {fn f, it is easy to verify that C contains
two distinct points with the same first coordinate. Hence, C is not the graph
of a function.

For completeness, we mention that the Ascoli theorem can be used to
establish the compactness of the space of compact subsets of a compact
metric space X under the Hausdorff metric, for the distance functions
associated with the compact subsets of X are a closed, bounded, equicon­
tinuous subset of C(X) [2].
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